Link Search Menu Expand Document

Hierarchical Robot Navigation in Novel Environments using Rough 2-D Maps

Paper PDF Code

Authors

Chengguang Xu (Northeastern University)*; Christopher Amato (Northeastern University); Lawson Wong (Northeastern University)

Interactive Session

2020-11-18, 11:10 - 11:40 PST | PheedLoop Session

Abstract

In robot navigation, generalizing quickly to unseen environments is essential. Hierarchical methods inspired by human navigation have been proposed, typically consisting of a high-level landmark proposer and a low-level controller. However, these methods either require precise high-level information to be given in advance, or need to construct such guidance from extensive interaction with the environment. In this work, we propose an approach that leverages a rough 2-D map of the environment to navigate in novel environments without requiring further learning. In particular, we introduce a dynamic topological map that can be initialized from the rough 2-D map along with a high-level planning approach for proposing reachable 2-D map patches of the intermediate landmarks between the start and goal locations. To use proposed 2-D patches, we train a deep generative model to generate intermediate landmarks in observation space which are used as subgoals by low-level goal-conditioned reinforcement learning. Importantly, because the low-level controller is only trained with local behaviors (e.g. go across the intersection, turn left at a corner) on existing environments, this framework allows us to generalize to novel environments given only a rough 2-D map, without requiring further learning. Experimental results demonstrate the effectiveness of the proposed framework in both seen and novel environments.

Video

Reviews and Rebuttal

Reviews & Rebuttal


Conference on Robot Learning 2020